
Strings
    String Types    The following discussion does not religiously follow each languages peculiar
use of the terms "string", "character", "array of characters", etc.    The term "string" is simply
used to denote whatever data type corresponds to the primary one used by a language to
manipulate blocks of ASCII characters.    The three most common types of strings
encountered when working with FaceWare modules correspond to the 3 major languages:
 1.    C:    character array of any length terminated by a null byte
 2.    Fortran:    character array terminated by spaces (space-padded)
 3.    Pascal:    ≤ 255-character array preceeded by a leading length byte
Macintosh compilers often support more than one of the above types of strings.    They will
also often provide string-conversion functions that convert one type to another.    The UtilIt
module also supports a CnvStr command that can be used to interconvert any of the above
types.    With respect to strings in shared records, a module will either force you to use a
particular type of string, or will allow you to use your language's native string type and do
the conversions itself.
    Each string type has its advantages and disadvantages.    In most cases, the disadvantages
of each type are balanced by built-in functions that do the dirty work for you:    finding the
length, inserting a substring, etc.
    Fortran strings have the advantage of having no "undefined" characters since spaces are
used to pad the end of strings.    This makes it easy to manipulate substrings within Fortran
strings since you never have to worry about where the end of the string is.    On the negative
side, spaces at the end of a string are never significant, and a search must be made to
determine string length.
    C strings also suffer from there being no simple way to determine their size without
searching for the end of the string (a null byte).    Another disadvantage is that the position
of the null byte must be managed when changing the size of the string.    On the plus side,
any non-null character can be used in the string, and C strings are not limited in size.
    Pascal strings have a leading length byte which solves the problem of quickly determining
the length of a string.    The length byte also supports packing Pascal strings together into
lists, providing a very efficient way to store strings.    On the down side, the length byte (like
C's null byte) must be adjusted each time the size of the string is changed, and limits the
size of the string to 255 characters.

String-To-Number Interconversion    Most applications that work with numbers will become
involved with interconverting numbers and strings.    Toolbox, SANE, and UtilIt routines are
available to all Mac programmers to interconvert numbers and strings:    StringToNum and
NumToString for integers, str2num and num2str for reals, and the commands NumToS and
SToNum.    Each language also has built-in support for interconverting numbers and strings:

Fortran    Fortran's support for "internal files" makes conversion of numbers to strings almost
trivial, and brings all the power of format statements to this operation.    For example,
suppose an existing program writes two integers to unit 3:
      integer alpha,beta
      ...
      alpha = 5
      beta = 10
      write(3,5) alpha,beta
5    format (2I5)
The equivalent statements for writing the same variables to the fRec's uName string
(referred to as an "internal file") would be,
      write(uName,5) alpha,beta
5    format (2I5)
or simply,
      write(uName,'(2I5)') alpha,beta
Reading a Fortran string is very similar to writing a string.    The following code reads the

variables alpha and beta from the string uName:
      read(uName,5) alpha,beta
5    format (2I5)    !2 int.s occupying 5 characters each
One drawback to using a string as an internal file in a read statement is that, with some
Fortran compilers, you cannot use list-directed formats ("*" formatting) when reading more
than one variable from a single string.    There is usually no problem, however, using "*"
formatting when writing multiple values to a string.

Pascal    The THINK Pascal functions "StringOf" and "ReadString" provide most of the
functionality of the equivalent Fortran "write" and "read".    Translating from the above
Fortran examples,
    alpha,beta : longint;
    ...
    alpha := 5;
    beta := 10;
    uName := StringOf(alpha:5,beta:5);
One potential problem using the "StringOf" function, however, is that it will use more
characters than the designated field width ("5" in the above example) if it finds that the
output string is larger than the space given.    So be certain to make your field-widths large
enough.
    Reading a string with "ReadString" is a lot like a list-directed read with Fortran.   
Unfortunately, you cannot always guarantee that the values in a string will be properly
delimited (there may be no space between one item and the next, or a single item may be
broken up by spaces).      For this reason, the safest way to use ReadString when reading
multiple values from a single string is to call it for each substring that must be evaluated.   
For example, to read the variables alpha and beta from the string uName used in previous
examples,
    ReadString(copy(uName,1,5),alpha);
    ReadString(copy(uName,6,5),beta);
    If your particular implementation of Pascal doesn't support functions equivalent to
"StringOf" and "ReadString" (or if you are developing a code resource in which StringOf and
ReadString are not supported), then use the UtilIt, toolbox, or SANE routines mentioned
above.

C    C provides an extensive set of string-handling functions.    From the perspective of other
languages, many of these functions are necessary because C does not provide more direct
ways of accomplishing the same task.    For example, even the simplest of operations such
as comparing and assigning strings are function based:
    strcpy(uName,"EditIt.Rsrc");      /* assign string */
    if (strcmp(uName,"Red") == 0)    /* compare strings */
    On the bright side, the C functions "sprintf" and "sscanf" provide nearly all of the
functionality of the equivalent Fortran "write" and "read" to internal files.    Translating from
the above Fortran examples,

long    alpha,beta;
    ...

alpha = 5;

beta = 10;

sprintf(uName,"%5ld%5ld",alpha,beta); /* "l" for long */
will write alpha and beta to uName using 5 characters for each number.
    The use of "sscanf" looks much like the equivalent Fortran formatted "read".    In many
cases, however, sscanf does not prove to be a reliable way of reading multiple values from a
single string.    One problem is that the format which you enter as part of the sscanf call is

not strictly followed if the function encounters spaces at the beginning of a field.    In this
case the spaces are skipped over until a non-space character is found before reading the
next variable with the next format, thereby putting the rest of the scan "out of synch".    This
function also has problems if the contents of a field contain spaces between non-space
characters.
    The bottom line is that sscanf should not be used to read multiple values from a string in
one statement unless you are certain that the non-space characters in the substrings being
read are left-justified in each field.    In all other cases you should read each substring with a
separate statement (as with Pascal).    For example, to read the variables alpha and beta
from the string uName, use
    sscanf(uName,"%5ld",&alpha);
    sscanf(&uName[5],"%5ld",&beta);
where "&uName[5]" means that the second scan should begin at the location in memory
which corresponds to the sixth character position of uName (0-based array indexing).

